
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 25, 105±121 (1997)

SPIKES AND JITTERING IN THE NUMERICAL SOLUTION OF

THE PLANETARY BOUNDARY LAYER PROBLEM: CAUSES

AND EFFECTS

A. G. PUFAHL1*, B. A. KAGAN2 AND W. EIFLER1

1Joint Research Centre of the CEC, IRSASAI, TP 690, I-21020 Ispra, VA, Italy
2P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, St. Petersburg, Russia

SUMMARY

Numerical experiments performed with all possible combinations of approximations for the equations of a one-
dimensional planetary boundary layer model employing a one-equation turbulence closure scheme and a
staggered, homogeneous, ®nite difference grid show that spikes and jittering in the vertical pro®les of predicted
variables are caused by an inappropriate numerical description of the turbulent kinetic energy equation. Jittering
arises when using both moderate and large time steps, while spikes occur for large time steps only. There exist
two types of jittering: transient and permanent. The former has a lifetime of about 1 week and occurs with large
time steps. Permanent jittering, on the other hand, is observed when using moderate time steps and has a lifetime
of more than a 1000 days. Introducing an iterative procedure for the eddy viscosity eliminates spikes and
permanent jittering but is unsuccessful in removing transient jittering. It is further found that the transition to
instability of the solution can be either a sudden or a gradual one. In the case of a sudden transition no numerical
peculiarities are observed, whereas for a gradual transition to instability, jittering is present during the entire
transition period. In this sense, jittering may be regarded as a herald of instability. Finally, a combination which
employs implicit approximations consistently for all the terms in the model equations, regardless of whether
using an implicit or semi-implicit approximation for the Coriolis term, proves to be devoid of any numerical
artefacts without the need for introducing the iterative procedure for the eddy viscosity. # 1997 by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Fluids, 25: 105±121 (1997).

No. of Figures: 5. No. of Tables: 0. No. of References: 15.

KEY WORDS: ®nite difference approximation; planetary boundary layer problem; spikes; jittering

1. INTRODUCTION

Numerical solutions to the turbulent planetary boundary layer problem are often accompanied by the

appearance of speci®c phenomena known as spikes and jittering. Here spikes are de®ned as drastic

changes in the turbulence characteristics associated with step-like features in the vertical mean

velocity pro®les which occur in the vicinity of the outer boundary of either the upper or the bottom
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boundary layer. Jittering consists of a zigzag-like change in the predicted pro®les of the turbulence

and mean ¯ow characteristics observable throughout the entire boundary layer thickness. Without any

doubt, `a jittering eddy viscosity pro®le with a maximum value of 15,000 cm2 s±1', which has been

observed by Frey,1 should be considered an unphysical feature. Observations of this kind were made

by several authors who described this peculiar behaviour as `unacceptable oscillations', `unphysical

noise' and `unrealistic pro®les'.

Let us recall precisely what it was they discovered leading to these interpretations. Frey1 reported

rather high values and jittering pro®les of eddy viscosity and diffusivity coef®cients and step-like

pro®les of scalar characteristics, employing a modi®ed version of the Mellor±Yamada level 2 closure

scheme (a description of the Mellor±Yamada hierarchy of turbulence closure schemes can be found

in References 2 and 3). Davies and Jones4 detected signi®cant time step oscillations of current

velocity in the near-bed layer and evidence of this was found in the upper part of the boundary layer.

The modulus of the bottom shear stress showed severe time step oscillations which eventually

corrupted the solution. Instantaneous vertical pro®les of shear stress also showed signi®cant

oscillations, having maximum amplitudes close to the base of the boundary layer. These results were

obtained by using various versions of a one-equation turbulence model (for a detailed classi®cation of

turbulence models see e.g. References 5±7). Deleersnijder and Luyten,8 in frames of the standard

Mellor±Yamada level 2�5 model, obtained pro®les of velocity and buoyancy which exhibited such a

high level of noise that it was regarded as being unphysical. This noise was associated with large-

amplitude oscillations in the pro®les of eddy viscosity and diffusivity. Davies et al.,9 using a zero-

equation local equilibrium turbulence model with Blackadar's mixing length approximation,

mentioned that a strong jittering began to grow at the point where the eddy viscosity decreased and

that this jittering was ampli®ed in time. Burchard and Baumert10 con®rmed that both the Mellor±

Yamada level 2 model and a local equilibrium turbulence model created oscillating zigzag pro®les of

eddy viscosity.

Clearly, the above-mentioned symptoms show common features: jittering in the vertical pro®les of

the turbulence characteristics, mean velocity and scalar quantities when dealing with boundary layer

problems. However, even though all authors who observed these features agree that this spurious

oscillating behaviour is both unphysical and unacceptable, their explanations of possible causes and

how to seek remedies are rather contradictory.

Frey1 found that jittering occurs whenever a time step Dt> 2(Dz)2=max(n) is chosen (here Dz is the

vertical grid spacing and n is the eddy viscosity). He also noticed that two different approximations of

the shear production term in the turbulent kinetic energy equation, as suggested by Davies and Jones4

and Duwe et al.,11 yield stronger jittering in the case of non-constant forcing, but added that this

feature was damped out after some time of constant forcing. As possible solutions to the problem of

jittering he recommended to choose either a suitably small time step to be estimated by some trial-

and-error runs, or an iteration of the eddy viscosity, which, however, did not solve the problem, or to

smooth the transition from turbulent to laminar ¯ow by introducing an arti®cial background viscosity.

Davies and Jones4 performed calculations using a number of different approximations for the

dissipation and shear production terms in a one-equation b±L model, which includes a prognostic

equation for the turbulent kinetic energy b and an algebraic expression for the mixing length L. They

found that the reason for the emergence or disappearance of oscillations when using one form of

approximation of the dissipation and shear production terms or the other was not clear. Introducing a

time-®ltering procedure or an iterative predictor±corrector scheme for the eddy viscosities did not

eliminate the oscillations in all the cases under consideration.

Deleersnijder and Luyten8 argued that the inappropriate behaviour of the stability function in the

Mellor±Yamada level 2�5 model, which involves an expression for the vertical shear stress, was a

probable reason for the lack of robustness. They noticed that, via a positive feedback accounted for in

106 A. G. PUFAHL, B. A. KAGAN AND W. EIFLER

INT. J. NUMER. METH. FLUIDS, VOL 25: 105±121 (1997) # 1997 by John Wiley & Sons, Ltd.



this stability function, an increase in shear stress leads to decreasing eddy viscosities and might

eventually result in a discontinuity in the velocity, giving rise to an unphysical source of turbulent

kinetic energy. They also pointed out that jittering was not a transient feature and did not seem to be

directly related to the grid resolution. As a remedy they proposed to use the so-called `quasi-

equilibrium parametrization', put forward by Galperin et al.,12 but mentioned that using another type

of numerical scheme might improve the results of the standard Mellor±Yamada level 2�5 model.

Burchard and Baumert10 also stated that the time step had to be reduced to avoid these unrealistic

zigzag pro®les and added that the local equilibrium model seemed to be less sensitive to the choice of

the time step than did the Mellor±Yamada level 2 model.

Davies et al.9 carried out a number of numerical experiments con®rming the existence of a critical

time step, as proposed by Frey,1 beyond which jittering occurs. They also compared the results of the

zero-equation local equilibrium model with a one-equation b±L model, where no jittering was

observed, and concluded that the problem of jittering was probably due to neglecting the vertical

diffusion term in the turbulent kinetic energy equation, which, although small, might ef®ciently

smooth out oscillations induced by the numerical scheme. Further, they argued that jittering was

directly related to the vertical grid spacing and could be avoided when using a ®ne resolution.

The aim of this report is thus to answer the following questions. What are the causes responsible

for these phenomena, i.e. are these features due to the physical assumptions underlying the model or

are they purely of numerical origin? How long do these peculiar features persist? What is it necessary

to do to eliminate these numerical artefacts?

In order to answer these questions, a one-dimensional model employing a one-equation b±L

turbulence closure scheme is considered. Care is taken that the fundamental physical processes

controlling the time±space variability of the planetary boundary layer are accounted for. The

approximation for the mixing length within the boundary layer follows Blackadar's13 proposal.

Further, allowance is made for each of the terms in the model equations to be calculated with either

an explicit, implicit or semi-implicit approximation, with the exception of the temporal change term

which is approximated with a ®rst-order, foward-in-time scheme. All possible combinations of the

approximations for the different terms, as well as two different semi-implicit schemes for the shear

production term in the turbulent kinetic energy equation, were examined.

As a test case we considered the evolution of a surface neutrally strati®ed planetary boundary layer

forced by a constant wind stress. The appropriate numerical experiments were peformed with six

different time steps ranging from 1 h to 30 s on a homogeneous, staggered, ®nite difference grid with

Dz� 1�0 m (unless speci®ed otherwise). It is shown that the phenomena are caused by choosing

certain combinations of approximations of the terms in the turbulent kinetic energy equation and that

they may be classi®ed as spikes, observable at large time steps only (Dt� 1 h), and jittering. Jittering

can present itself as either a transient feature, observable exclusively at larger time steps and having a

lifetime of up to several days, or a permanent feature, observable when using smaller time steps and

which persists for more than a 1000 days. Permanent jittering, in turn, can show up in the vertical

pro®les of either the turbulence characteristics only or both the turbulence characteristics and the

mean velocity. It was found that the only way to avoid any of these features is to use implicit

approximations consistently for all the terms in the turbulent kinetic energy equation. Introduction of

an iterative procedure for the eddy viscosity was found to eliminate spikes and permanent jittering

but was not successful in removing transient jittering.

The paper is organized as follows. The model equations with their initial and boundary conditions

are presented in the next section. In Section 3 the ®nite difference approximation of the boundary

value problem is discussed in some detail. Section 4 contains a description of the numerical

experiments which were performed to understand the causes leading to spikes and jittering and an

analysis of these phenomena. The paper ends with Section 5 including the conclusions.
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2. PLANETARY BOUNDARY LAYER MODEL

The model equation for momentum in terms of the complex velocity w� u� iv (here u and v are the

x- and the y-component of the current velocity respectively) is written as

@w

@t
� ifw � ÿ 1

r0

@p

@x
� i

@p

@y

� �
� @

@z
n
@w

@z

� �
: �1�

This equation is supplemented with the turbulent kinetic energy equation

@b

@t
� @

@z
abn
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@w
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���� ����2ÿc1

b3=2
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and the de®nition of the eddy viscosity coef®cient

n � c0Lb1=2; �3�
where L is the mixing length de®ned in accordance with Blackadar13 as

L � k�H ÿ z�
1� k�H ÿ z�=L0

: �4�

In these equations, p denotes pressure, which in the following sections is assumed to be horizontally

homogeneous, being equivalent to the case of purely wind-driven ¯ow; b is the turbulent kinetic

energy; L0 is the limiting value of the mixing length; f is the Coriolis parameter; r0 is a constant

reference density; H is the total water depth; z is the vertical co-ordinate, having its origin at the

seabed and increasing upwards; t is time; k is von Karman's constant; ab is the ratio of the eddy

diffusivity to the eddy viscosity, which for simplicity is taken to be unity; and c0� 0�5 and

c1� c3
0� 0�125 are numerical constants (see e.g. Reference 14).

The various terms in (1) and (2) are as follows: @w=@t and @b=@t are the temporal rates of change;

ifw is the Coriolis term; @(n@w=@z)=@z and @(abn@b=@z)=@z are the vertical momentum and turbulent

kinetic energy diffusion respectively: n|@w=@z|2 is the shear production and c1(b3=2=L) the dissipation

e of turbulent kinetic energy.

Equations (1)±(3) form a closed set and are solved subject to some arbitrary initial conditions

(w�w0 and b� b0 at t� 0) and the boundary conditions

w � 0 and b � �1=c2
0r0�jtbj2 at z � 0; �5�

r0n�@w=@z� � ts and b � �1=c2
0r0�jtsj2 at z � H; �6�

where ts is the surface wind stress and tb is the bottom shear stress de®ned as tb� r0n(@w=@z) at

z� 0. The boundary conditions for b are derived from the condition of local balance of turbulent

kinetic energy generation and dissipation and hence are in essence equivalent to the zero-¯ux

condition for turbulent kinetic energy, considering that the turbulent kinetic energy is constant in the

near-surface and near-bed layer.

3. FINITE DIFFERENCE APPROXIMATION

Equations (1) and (2) are discretized in the vertical by means of ®nite differences on a homogeneous,

staggered grid. In other words, the velocites are calculated at the grid points with subscript k and all
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turbulence characteristics (b, L, n) as well as the vertical mean velocity shear are calculated at

intermediate grid points. As a result, Equation (1) is reduced to the form

wt�1
k ÿ wt
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where Dz and Dt are the vertical grid spacing and the time step respectively. It is readily seen that if

y� (y1, y2)� 0, we obtain an explicit approximation, if y� 1, an implicit approximation, and if

y � 1
2
, a semi-implicit approximation for both the Coriolis and vertical diffusion terms.

The temporal rate of change in (2) and the vertical diffusion term are approximated in a similar

manner and will not be repeated here. The term describing the production of turbulent kinetic energy

due to the vertical mean velocity shear is approximated using two different schemes,4 namely

n
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Thus we have an explicit approximation for y3� 0, an implicit approximation for y3� 1 and two

different semi-implicit approximations for y3 � 1
2
, labelled SP1 and SP2:
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2
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The approximation of the dissipation term requires some comment. After eliminating L from the

expression for e by using (3), the dissipation term reads

e � �c4
0=n�b2: �12�

The turbulent kinetic energy b appearing in this equation is approximated as

b � bt � y4�bt ÿ bt�1�; �13�

so that squaring expression (13) yields

b2 � �bt�2 � 2y4bt�bt�1 ÿ bt� � y2
4�bt�1 ÿ bt�2: �14�
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If one assumes that bt+1! bt when approaching steady state, then the last term on the right-hand side

of (14) may be neglected and expression (12) takes the form

e � �c4
0=nk��2y4bt

kbt�1
k � �1ÿ 2y4��bt

k�2�: �15�

Thus we obtain an explicit approximation e � �c4
0=nk��bt

k�2 for y4� 0, a semi-implicit approximation

e � �c4
0=nk��bt

kbt�1
k � for y4 � 1

2
and an implicit approximation e � �c4

0=nk��2bt
kbt�1

k ÿ �bt
k�2� for y4� 1

(note that for simplicity we call this expression `implicit' even though it involves partial implicitness

only).

The discretized boundary condtions for momentum are

tkb � r0nkb

wkb

Dzkb

� tb at z � 0; tks�1 � r0nks�1

wks�1 ÿ wks

Dzks�1

� ts at z � H

and for turbulent kinetic energy are

bkb �
1

c2
0r0

jtbj2 at z � 0; bks �
1

c2
0r0

jtsj2 at z � H :

Note that, without using a re®ned grid in the near-bed region, the implementation of the no-slip

condition for momentum, together with the above boundary condition for turbulent kinetic energy, is

apparently somewhat unnatural. Instead of employing the no-slip condition, it would be better to

specify the equality of the momentum ¯ux to the bottom shear stress, which could be parametrized,

for example, by the quadratic resistance law. However, for the case under consideration here, this is

not of importance, since we are dealing with a surface boundary layer to which the in¯uence of the

bottom boundary layer is not extended.

After rearranging all variables at time step t� 1 to the left-hand side, we obtain the matrix equation

�c1k �jt�1
kÿ1 � �c2k �jt�1

k � �c3k �jt�1
k�1 � �c4k �; �16�

which is solved by means of standard Gaussian elimination and back substitution. Here j� (w, b)

and the coef®cients of the matrix equation (16) are, for j�w,
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and for j� b ,

c1k � ÿ
aby2Dt

Dzk

nk � nkÿ1

Dzk � Dzkÿ1

;

c2k � 1� aby2Dt

Dzk

nk�1 � nk

Dzk�1 � Dzk

� nk � nkÿ1

Dzk � Dzkÿ1

� �
� 2y4Dtc4

0

nk

bt
k ;

c3k � ÿ
aby2Dt

Dzk

nk�1 � nk

Dzk�1 � Dzk

;

c4k � 1ÿ Dtc4
0

nk

�1ÿ 2y4�bt
k

� �
bt

k �
ab�1ÿ y2�Dt

Dzk

�nk�1 � nk�
bt

k�1 ÿ bt
k

Dzk�1 � Dzk

ÿ �nk � nkÿ1�
bt

k ÿ bt
kÿ1

Dzk � Dzkÿ1

� �

� nk

y3

ut�1
k ÿ ut�1

kÿ1

Dzk

� �2

� vt�1
k ÿ vt�1

kÿ1

Dzk

� �2
" #

� �1ÿ y3�
ut

k ÿ ut
kÿ1

Dzk

� �2

� vt
k ÿ vt

kÿ1

Dzk

� �2
" #

�for expression �8��

y3

ut�1
k ÿ ut�1

kÿ1

Dzk

� �1ÿ y3�
ut

k ÿ ut
kÿ1

Dzk

� �2

� y3

vt�1
k ÿ vt�1

kÿ1

Dzk

� �1ÿ y3�
vt

k ÿ vt
kÿ1

Dzk

� �2
" #

�for expression �9��

8>>>>>>>>>><>>>>>>>>>>:
The equations are solved in the following sequence: ®rst the solution of the equation for the

complex velocity is found, from which the u- and the v-velocity are determined; then the equation for

the turbulent kinetic energy is solved and thereafter the eddy viscosity is computed. In this sequence

the computations are performed at each time step.

At this point it is important to stress that even though in this context an approximation is called

implicit or semi-implicit, it is not strictly the case because it involves an eddy viscosity which is taken

from the previous time step. In order to remedy this contradiction, an iterative procedure for the eddy

viscosity coef®cient may be applied. Whenever the iterative procedure is employed, as discussed in

the following section, convergence is considered to be attained if the relative discrepancy between

`old' and `new' eddy viscosities does not exceed 1 per cent.

4. NUMERICAL EXPERIMENTS

A series of numerical experiments was set up with the aim of understanding the causes leading to the

appearance of spikes and jittering. With this aim in mind, all possible combinations of explicit,

implicit and semi-implicit approximations for the various terms in the model equations were tested,

the exception being the Coriolis term which was approximated by either an implicit or a semi-implicit

scheme only to overcome the drastic time step limitation as imposed by the criteria of stability.

By making use of the model described above, we simulated the evolution of the neutrally strati®ed

upper Ekman boundary layer forced by a constant wind stress. The water depth was taken to be

100 m, deep enough to eliminate the in¯uence of the bottom boundary layer on the surface boundary

layer, a wind stress of 0�1 N m±2 along the y-axis was applied, following Ei¯er and Schrimpf,15 the

limiting value of the mixing length L0 was set to 2�5 m, the latitude was speci®ed to be 30�N and a

total run of 100 days was chosen in order to reach, or at least approach, steady state, unless speci®ed

otherwise, a constant grid spacing Dz� 1�0 m was used.

In Figure 1, the complete set of numerical experiments which were performed is depicted. Here the

symbol `f' denotes the Coriolis term, `D' the vertical diffusion of momentum and turbulent kinetic
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Figure 1. Set of numerical experiments and properties of solution obtained when using different combinations of approximations for various terms of model equations. Terms: f,
Coriolis term; D, vertical turbulent diffusion of momentum and turbulent kinetic energy; SP, shear production; e, dissipation of turbulent kinetic energy. Approximations: 1,
explicit; 2, implicit; 3, semi-implicit. Time steps: I, Dt� 1 h; II, Dt� 30 min; III, Dt� 15 min; IV, Dt� 5 min; V, Dt� 1 min; VI, Dt� 30 s. Properties: s, stable solution;

d, unstable solution; , spikes; z, jittering
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energy, `SP' the shear production (recall that SP1 and SP2 are de®ned by (10) and (11)) and `e' the

dissipation of turbulent kinetic energy. The numbers 1, 2 and 3 denote respectively that an explicit, an

implicit or a semi-implicit approximation was used. For example, `SP2.3' means that a semi-implicit

approximation for the shear production term SP2 was employed. An open circle indicates that a stable

solution was obtained, a full circle means that the solution `exploded' owing to numerical instability,

the symbol `>' indicates that spikes were observed and the symbol `z' shows where jittering was

detected. The computations were carried out with time step Dt� 1 h for row I, Dt� 30 min for row

II, Dt� 15 min for row III, Dt� 5 min for row IV, Dt� 1 min for row V and Dt� 30 s for row VI.

All in all, 72 combinations of approximations are possible for a given time step and a given vertical

resolution.

As can be seen from Figure 1, spikes only occur if we use (i) a time step Dt� 1 h and (ii) an

implicit approximation for the D-term. The only combinations of approximations which do not show

spikes even though both conditions (i) and (ii) are satis®ed are f2±D2±SP2±e2 and f3±D2±SP2±e2,

i.e. those combinations which employ implicit approximations for each of the terms in the turbulent

kinetic energy equation. On the other hand, jittering is observed for a range of different time steps

(Dt� 1 h to Dt� 5 min), but only when making use of a semi-implicit approximation for the D-term

and combinations of the form I±f2±SP2.3±e2, II±f2±SP2.3±e2, III±f2±SP2±e3, IV±f2±SP2±e2 and

IV±f2±SP2±e3, as well as if a semi-implicit approximation for the Coriolis term and combinations of

the form I±SP2.3±e2, II±SP2.3±e2, IV±SP2±e2, IV±SP2±e3 are employed.

It can also be deduced from Figure 1 that it is the choice of approximation for the vertical turbulent

diffusion term which determines the maximum possible time step for the solution to be free of any

numerical artefacts. This time step turns out to be 30 s for D1, 1 min for D3 and 5 min for D2. Not

surprisingly, the greatest time step can be employed with an implicit approximation for the vertical

diffusion term, regardless of which approximations, or any combination thereof, are chosen for the

shear production, dissipation and Coriolis terms. Comparing the solutions obtained with an implicit

or a semi-implicit approximation for the D-term, i.e. D2 or D3, also shows that more combinations

involving D2 produce stable solutions regardless of which approximation for the Coriolis term is

used.

Spikes

The vertical distributions of different characteristics, given the combination of the form I±f3±D2±

SP1.3±e2, are shown in Figure 2 (note that the horizontal scales in Figures 2±5 may vary). The

in¯uence of changing the vertical resolution is illustrated by comparison of Figures 2(a)±2(d) and

2(e)±2(h), which correspond to Dz� 1�0 and 0�5 m respectively.

We see that spikes occur at the base of the surface boundary layer. They appear in the pro®les of

the momentum ¯ux n|@w=@z| (Figures 2(b) and 2(f)) and the components of the turbulent kinetic

energy budget (Figures 2(c) and 2(g)) and the turbulent kinetic energy b (Figures 2(d) and 2(h)) and

manifest themselves as step-like discontinuities in the vertical pro®les of the mean u- and v-velocity

(Figures 2(a) and 2(e)). It is readily seen that spikes are drastically enhanced when using a ®ner

vertical resolution. Not surprisingly, the solution with an even ®ner resolution, Dz� 0�2 m,

`exploded' and would require a reduction of the time step for the solution to be stable. An important

point to note is that spikes are only observed during the period of a deepening surface boundary layer

and disappear when the lower boundary of this layer reaches the seabed. Their lifetime is of the order

of a few days, depending on the external parameters.

The answer to the question of whether the discontinuities in the velocity pro®les lead to the

arti®cially high shear and hence to unrealistic production of turbulent kinetic energy or whether the

spikes in the turbulent characteristics give rise to those discontinuities is of no importance. There is
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Figure 2. Spikes at base of surface planetary boundary layer, obtained after 1 day of simulation with combination I±f3±D2±
SP1.3±e2 and (a)±(d) Dz� 1�0 m; (e)±(h) Dz� 0�5 m: (a), (e) mean u- and v-velocity; (c), (g) components of turbulent kinetic
energy equation; (b), (f) momentum ¯ux; (d), (h) turbulent kinetic energy. (TR, temporal rate of change; D, vertical diffusion;

SP, shear production; e, turbulent kinetic energy dissipation). Note variable horizontal scales
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reason to believe that an inadequate numerical description of the non-linear interaction between

turbulence and mean velocity due to an inappropriate choice of combination of approximations and

large time steps Dt is responsible for this type of numerical artefact. The only combinations which

produce stable solutions devoid of any spikes at Dt� 1 h are those which employ implicit

approximations consistently for all the terms of the turbulent kinetic energy equation. It was also

found that making use of the iterative procedure for the eddy viscosity, as described in Section 3,

removed the spikes in all the cases in which they were previously obtained.

Jittering

Jittering in the vertical pro®les of the various characteristics, obtained with combinations of the

form I±f2±D3±SP2.3±e2, IV±f2±D3±SP2±e2 and IV±f2±D3±SP2±e3, is illustrated in Figures 3 and 4.

Analysis of these ®gures reveals the presence of transient and permanent jittering.

Transient jittering occurs during the spin-up period. For the case presented in Figure 3, this

peculiarity has a lifetime of 1 week. Shown in Figures 3(a)±3(d) are the vertical pro®les of the mean

u- and v-velocity, the momentum ¯ux and the components of the turbulent kinetic energy budget and

the turbulent kinetic energy after 1 day of simulation. It can be seen that strong jittering disturbs each

of the pro®les of the mean velocity and turbulence characteristics throughout the entire surface

boundary layer. The same pro®les after 5 days of simulation are depicted in Figures 3(e)±3(h), where

jittering is completely damped out in the vertical pro®les of all the characteristics, except for the

momentum ¯ux, in which small zigzag changes are still observable. However, after 7 days of

simulation these disturbances also disappear and the solution is totally free of any peculiarities. This

is an illustration of the fact that transient jittering persists longest in the vertical pro®les of the

momentum ¯ux. When employing a ®ner vertical resolution (Dz� 0�5 m), transient jittering with a

lifetime of several days is observed at time step Dt� 15 min. Introducing the iterative procedure for

the eddy viscosity does not eliminate transient jittering, though the amplitude of jittering is reduced.

Permanent jittering is illustrated in Figure 4, where this feature is detected either in the turbulence

characteristics only, shown here for the combination of the form IV±f2±D3±SP2±e2 (Figures 4(a)±

4(d)), or in both the mean velocity and turbulence characteristics, shown in Figures 4(e)±4(h) for the

combination of the form IV±f2±D3±SP2±e3. The vertical pro®les depicted were obtained after 500

days of simulation in which jittering remained unchanged during the period 50±500 days. It was still

present after 1000 days and hence can be considered as a permanent artefact. A curiosity is that while

the use of an implicit approximation for all the terms guarantees the lack of any jittering at all time

steps, a semi-implicit scheme for the D-term introduces jittering at the relatively small time step

Dt� 5 min. In fact, permanent jittering is observed at moderate time steps only. Figures 4(b)±4(d)

illustrate its manifestation in the turbulence characteristic and momentum ¯ux pro®les. From these

®gures we notice that the magnitude of jittering is apparently less than a certain threshold value, so

this feature is not detectable in the pro®les of the mean velocity (Figure 4(a)). Another change in the

approximation, from an implicit scheme for the e-term to a semi-implicit one, without changing any

of the other model parameters, leads to larger jittering which, correspondingly, is also observable in

the mean velocity pro®les (Figure 4(e)). Comparing the vertical pro®les of the various components of

the turbulent kinetic energy budget (Figures 4(c) and 4(d)) provides us with some new information.

Although the approximation e2 is changed to e3, the dissipation pro®le is not substantially affected.

Larger jittering is present only in the temporal rate of change and shear production of turbulent

kinetic energy, whereas the in¯uence of the vertical turbulent kinetic energy diffusion is almost

negligible.

In order to understand the causes leading to the appearance of jittering, we veri®ed the validity of

the criterion Dtcrit 5 2(Dz)2=max(n) for the existence of this phenomenon, which has been put
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Figure 3. Transient jittering occurring during spin-up period: (a)±(d) pro®les of mean velocity and turbulence characteristics
after 1 day and (e)±(h) after 5 days of simulation with combination I±f2±D3±SP2.3±e2. Note variable horizontal scales
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Figure 4. Permanent jittering after 500 days of simulation with combination IV±f2±D3±SP2: (a)±(d) jittering observable in
turbulence characteristics only when using implicit dissipation (e2); (e)±(h) jittering in both mean velocity and turbulence

characteristics when using semi-implicit dissipation (e3). Note variable horizontal scales
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forward by Frey,1 in analogy with the stability criterion for a one-dimensional heat conductivity

problem with constant heat diffusivity. It was found that for every occurrence of jittering as indicated

in Figure 1, the criterion was exceeded. For example, when using the combination of the form f2±

D3±SP2±e2 with Dt� 300 s and Dz� 1�0 m, the above criterion for max(n)� 0�0115 m2 s±1

indicates that jittering occurs for Dtcrit> 174 s, which is clearly the case. It is important to note that

with a reduction in time step to Dt� 200 s (with the corresponding values of Dtcrit and max(n) being

174 s and 0�0115 m2 s±1 respectively), jittering is removed even though the critical time step is

exceeded. Moreover, experiments with ®ner vertical resolutions, Dz� 0�5 m and Dz� 0�25 m,

con®rm that jittering is absent even though the time step was chosen to be greater than the critical

one. These ®ndings show that for the combinations which give rise to jittering, the criterion is a

necessary though rather crude condition for the existence of this peculiarity. However, as can be seen

from Figure 1, there are other combinations for which jittering does not occur even if the criterion is

exceeded. In this sense the proposed criterion is an insuf®cient condition for the existence of jittering.

Employing the iterative procedure for the eddy viscosity eliminated the phenomenon of permanent

jittering in all the cases in which it was previously obtained.

It was also found that, upon progressively increasing the time step, the transition from a stable to

an unstable solution happened in two different ways. On one hand, there is a sudden transition

without jittering from a stable solution at Dt� 368�5 s to an unstable one when the time step increases

by only 0�1 s; this was observed in the experiment labelled f3±D2±SP1.3±e1. On the other hand, there

is also a gradual transition when jittering occurs during the entire transition period. This behaviour,

depicted in Figure 5, showing the details of the surface boundary layer only (down to a depth of

50 m), was detected when using the combination of the form f2±D3±SP2±e1. From Figure 1 it

follows that this combination ensures a stable solution at Dt� 1 min and `explodes' at Dt� 5 min.

Successively increasing the time step, starting from the stable solution, reveals (Figures 5(a)±5(c))

that Dt� 131 s is the maximum possible time step for the solution to remain stable. At Dt� 132 s,

jittering is small, but it grows in magnitude upon further increasing the time step. The results of this

can be seen in Figure 5(d), depicting the components of the v-momentum equation (recall that wind

forcing is applied in the y-direction). We notice that jittering affects the temporal rate of change in v-

velocity and the vertical diffusion of in¯ux. Jittering is observable in the @b=@t-term (Figure 5(e)) but

is hardly discernible in the b-pro®le (Figure 5(f)). Maximum jittering is obtained with Dt� 141 s

(Figures 5(g)±5(i)). It now affects the shear production and dissipation (Figure 5(h)) and hence also

the turbulent kinetic energy (Figure 5(i)). Eventually, at Dt� 142 s the solution becomes unstable.

Gradual transition to instability through jittering was observed in several other cases when using

combinations of D3-type.

These results testify that jittering can serve as a herald of instability, although a sudden transition

from a stable to an unstable solution can also occur. It is thus evident that Figure 1 cannot be regarded

as being complete. In fact, if the whole range of time steps from 1 h to 30 s could have been

displayed in, say, 1 s intervals, we could observe that there are more cases of gradual transitions than

are shown in Figure 1.

We can summarize that the phenomena of spikes and jittering are not only the result of violating

stability conditions owing to an inconsistent choice of temporal and vertical resolutions, but also of

inappropriate approximations for the turbulent kinetic energy equation. It is precisely these reasons

which lead to numerical instability and hence to such drastic consequences as spikes and jittering

which distort, if not entirely corrupt, the solution. This is con®rmed by the fact that the consistent

use of implicit approximations does not produce these phenomena. We also demonstrated that the

iterative procedure for the eddy viscosity eliminates spikes and permanent jittering but does not

remove transient jittering, though the magnitude of the latter is reduced.
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Figure 5. Gradual transition via jittering to instability obtained with combination f2±D3±SP2±e1 and (a)±(c) Dt� 131 s; (d)±(f) Dt� 134 s; (g)±(i) Dt� 141 s: (a), (d), (g)
components of v-momentum equation (dvdt, temporal rate of change; vcor, Coriolis term; diffv, vertical diffusion of v-momentum); (b), (e), (h) components of turbulent kinetic
energy equation; (c), (f), (i) turbulent kinetic energy. Note variable horizontal scales; the vertical scale is taken to be 50 m to show the surface planetary boundary layer only
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5. CONCLUSIONS

Whilst spikes and jittering in the vertical pro®les of mean velocity and turbulence characteristics have

been observed by several authors, the explanations of their causes and how to avoid these numerical

artefacts remain rather contradictory. In order to answer these questions, a series of numerical

experiments was set up with all possible combinations of explicit, implicit and semi-implicit

approximations for the equations of a simple b±L planetary boundary layer model. As a test case the

neutrally strati®ed surface Ekman boundary layer forced by a constant wind stress was considered.

Analysis of the results obtained leads to the following ®ndings. Spikes are only detected if an

implicit approximation for the vertical diffusion term and large time steps are used. This feature

occurs at the base of the boundary layer and has a lifetime or the order of several days. Jittering is

observable throughout the entire boundary layer depth and reveals itself when employing a semi-

implicit approximation for the vertical diffusion term over a wide range of time steps. Two types of

jittering are distinguishable: transient and permanent. The former occurs during the spin-up period

and has a lifetime of about 1 week. This feature persists longest in the momentum ¯ux pro®le. Permanent

jittering, on the other hand, has a lifetime of more than 1000 days and is detected either in the turbulence

characteristics only or in both the mean velocity and turbulence characteristics. It is also noted that

the transition from a stable solution to an unstable one can happen suddenly or gradually. In the ®rst case,

jittering is absent; in the second case, jittering is observed during the entire transition period. This

behaviour can serve as testimony to the fact that jittering is a herald of instability.

The study shows that for jittering to occur, the empirical criterion proposed by Frey1 is a necessary

though insuf®cient condition. The existence of spikes or jittering depends, among other things, on the

choice of approximations for the different terms in the turbulent kinetic energy equation. That is,

spikes and jittering are obtained with certain combinations of approximations only and can be

avoided when using different ones. We thus conclude that spikes and jittering may be regarded as

artefacts caused by numerical instability. A combination which employs implicit approximations

consistently for all the terms in the turbulent kinetic energy equation, regardless of whether an

implicit or a semi-implicit approximation for the Coriolis term is used, proves to devoid of any

numerical artefacts over the whole range of time steps considered. It is further found that by

introducing an iterative procedure for the eddy viscosity, spikes and permanent jittering are removed

owing to apparently minimizing an imbalance in the turbulent kinetic energy budget which is caused

by taking the eddy viscosity from the previous time step.

Finally, it has to be stressed that we only considered the simplest test case imaginable. It seems

likely that in realistic situations, with ¯uctuating wind stress and=or buoyancy ¯ux at the sea surface,

the effects of spikes and jittering may distort the solution throughout the entire simulation period if

precautions are not taken. Moreover, these effects may not be distinguishable from their natural

variability. It follows that it is of the utmost importance to eliminate any possibility for these

phenomena to appear.
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